PRÁCTICO 5 LENGUAJES FORMALES: Grámaticas libres de contexto (CFGs) y Automatas de pila (PDAs)

Mauricio Velasco

- 1. Sea $\Sigma = \{a, b, (,), \cup, *, \emptyset\}$. Construya un CFG que genere todas las cadenas de Σ^* que sean expresiones regulares sobre $\{a, b\}$.
- 2. Sea $V = \{a, b, S, A, B\}, \Sigma = \{a, b\}$ y defina R mediante las reglas

$$\begin{cases} S \to aB \\ S \to bA \\ A \to a \\ A \to aS \\ A \to BAA \\ B \to b \\ B \to bS \\ B \to ABB \end{cases}$$

- a) Demuestre que $ababba \in L(G)$
- b) Muestre que L(G) es el conjunto de todas las cadenas no vacias que tienen la misma cantidad de ocurrencias de a y de b.
- 3. Demuestren que el conjunto de lenguajes generados por algun CFG (o equiv. aceptados por algun PDA) cumple:
 - a) Es cerrada bajo las operaciones de unión, concatenación y estrella de Kleene.
 - b) No es cerrada ni bajo intersección ni bajo complementos (Nota: Esto requiere construir contraejemplos explícitos y usar alguna versión del pumping lemma para CFGs).

4. Considere el PDA M con $K=\{s,f\}, \Sigma=\{a,b\}, \Gamma=\{a\}$ y con Δ dado por

$$\{[(s, a, e), (s, a)], [(s, b, e), (s, a)], [(s, a, e), (f, e)], [(f, a, a), (f, e)], [(f, b, a), (f, e)]\}$$

- a) Escriba todas las posibles sucesiones de transiciones de M con input aba.
- b) Demuestre que $aba, aa, bb \notin L(M)$ pero $baa, bab, baaa \in L(M)$.
- c) Describa L(M) en palabras.
- 5. Construya PDAs que acepten cada uno de los siguientes lenguajes del alfabeto $\Sigma = \{a, b\}$:
 - a) El lenguaje $\{a^mb^n: m \leq n \leq 2m, m \in \mathbb{N}\}$
 - b) El lenguaje $\{w \in \Sigma^*: w = w^R\}$ donde w^R denota la palabra reversa.
 - c) El lenguaje

$$\{w \in \Sigma^* : w \text{ tiene el doble de } b$$
's que de a 's $\}$

6. Sea M un PDA. El lenguaje aceptado por M con estado final $f_0 \in F$ se define como

$$L_{f_0}(M) := \{ w \in \Sigma^* : (s, w, \epsilon) \vdash (f_0, \epsilon, \alpha) \text{ para algún } \alpha \in \Gamma^* \}$$

Demuestre que existe un PDA M' con $L(M') = L(M_{f_0})$.