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Definition.

A body in Rn is a compact set B ⊆ Rn containing the origin
in its interior.

A body is star-shaped with respect to x ∈ B if for every
p ∈ B the line segment [x , p] joining x and p is entirely
contained in B.

A star-body is a body which is star shaped with respect to
the origin.
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Basic questions

1 What information is needed to describe a star body?

2 How to describe or at least approximate a given star body
efficiently?

3 What are the natural invariants of star bodies and how to
compute them effectively?

4 How to model the space of star-bodies?

Solving questions (2) and (3) would give us a computational
theory of star-bodies.
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Information

To describe a star-body B ⊆ Rn it suffices to specify how far does
the body extend in each unit direction ~u ∈ Sn−1.

Definition.

The radial function of B is the function ρB : Sn−1 → R

ρB(u) = sup{λ > 0 : λu ∈ B}

Equivalently we can think that B is like the unit ball of a norm and
scale B to define a function in Rn

Definition.

The gauge function of B is the function γB : Sn−1 → R

γB(u) = inf{λ > 0 : λB 3 u}

Exercise. Prove that for every star-body B we have
ρB(u)γB(u) = 1.
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Good star-shaped bodies:

A very interesting example of star-shaped bodies are the
convex bodies. These are star-shaped with respect to every
point.

There are star bodies which are star-shaped only with respect
to the origin.

In between these two there are star-shaped bodies whose
star-source set (defined as the set of points from which the
set is star-shaped) contains a ball around the origin.

Theorem.

The star-source set of B contains a ball of radius r > 0 around the
origin if and only if the gauge function γB : S2 → R is Lipschitz
continuous. In this case 1/r is a valid Lipschitz constant.

We will focus on Lipschitz star bodies.
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As a function approximation problem

Any positive, Lipschitz continuous function on the sphere
Sn−1 is the radial (resp. gauge) function of a good star body.

It follows that we need to understand positive, Lipschitz
continuous functions on the sphere Sn−1.

The ring of continuous real-valued functions on the sphere C (S)
has the following two properties:

It is a Banach space with the supremum norm

‖f − g‖∞ := sup
u∈Sn−1

|f (u)− g(u)|

It contains an explicit family, the restrictions of polynomials in
R[x1, . . . , xn] to Sn−1.This algebra,denoted R[S ] is dense in C (S)
by the Stone-Weierstrass Theorem.
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Polystar approximations

It follows that the following families of bodies are universal
approximators

Definition.

A star body is called polyradial (resp. polygauge) if its radial
function (resp. gauge function) f : Sn−1 → R is the restriction of
a multivariate polynomial to Sn−1.



Polystar approximations

Consider the polynomial p(x , y) = 32x6 + 32y + 128 for (x , y) ∈ S .
This defines a polygauge body L1 via γL1(x , y) = p(x , y) and a
polyradial body L2 via ρL2(x , y) = p(x , y).
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Polystar approximations

Imagine we are given the radial (or gauge) functions fE of a body
E as a black-box which, given u ∈ Sn−1 returns fE (u).

Question.

How to construct a polystar approximation of E?

Are there quantitative estimates of their accuracy?

Are poly-star bodies good approximators?
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Filtering star functions

A radial/gauge function can be very complicated, so we will pass it
through a polynomial low pass filter...

Definition.

Let g(t) be a univariate polynomial which is nonnegative on
[−1, 1]. Define Tg : R → R via Tg (f (x)) = h(x) where

h(x) =

∫
S
g (〈x , y〉)f (y)dµ(y)

where µ is the (n − 1)-dimensional volume measure.
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Constructing approximations

Theorem. (Miller, Meroni, -)

Let f be a Lipschitz function with Lipschitz constant κ on Sn−1.
Then, there exists an explicit sequence of univariate nonnegative
polynomials {gd}d with gd : [−1, 1]→ R of degree d such that for
d →∞,

‖f − Tg (f )‖∞ ∼
π(n − 2)√

2

κ

d
.

Remark.

The previous Theorem improves an inequality of Newman and
Shapiro [1964] later generalized by Ragozhin [1971].

Remark.

We also proved that the polygauge approximating bodies of a
convex body are automatically convex.
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Theorem. (Miller, Meroni, -)

Assume n ≥ 3. Let f be a Lipschitz function with Lipschitz
constant κ on Sn−1. Then, there exists a sequence of univariate
nonnegative polynomials {gd}d with gd : [−1, 1]→ R of degree d
such that for d →∞,

‖f − Tgd (f )‖∞ ∼
π(n − 2)√

2

κ

d
.

Remark.

If f satisfies stronger differentiability hypotheses then the filter can
be iterated on the error yielding faster convergence
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Example: degree 20



How to compute Tg(f )

Definition.

Let g(t) be a univariate polynomial which is nonnegative on
[−1, 1]. Define Tg : R → R via Tg (f (x)) = h(x) where

h(x) =

∫
S
g (〈x , y〉)f (y)dµ(y)

The maps Tg have the following remarkable property

Lemma.

For every A ∈ SO(n) we have

Tg (f (Ax)) = Tg (f )(Ax)

in other words Tg : R[S ]→ R[S ] is a morphism of SO(n)
representations. This implies that all the maps Γg become
simultaneously diagonal in some natural basis.
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The ring R[S ]

Definition.

A homogeneous polynomial f of degree d in R[x1, . . . , xn] is called
harmonic if ∆f = 0.

If Hd ⊆ R[S ] denotes the restrictions to the sphere of the
homogeneous harmonic polynomials of degree d then

Hd = R[S ]≤d ∩ R[S ]⊥≤d−1 is an irreducible SO(n)
representation and

R[S ] =
⊕∞

d=0Hd

Definition.

In particular, every f ∈ L2(Sn−1, µ) has a unique expression as a
sum f =

∑∞
j=0 fj with fj ∈ Hj , the spherical harmonic

decomposition of f .
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Spherical harmonic expansion

In the spherical harmonic decomposition the operator Tg must be
diagonal, leading to

Lemma. (Funk-Hecke)

Assume g(t) =
∑d

j=0 λ
g
j φj(t) is the unique expression of g(t) as

linear combination of (suitably normalized) Gegenbauer
polynomials. If

f = f0 + f1 + · · ·+ fd + . . .

is the spherical harmonic expansion of f ∈ R[S ] then we have

Tg (f ) = λg0 f0 + λg1 f1 + λg2 f2 + · · ·+ λgd fd .

Remark.

This implies that every equivariant map is essentially a univariate
convolution (and in particular spherically symmetrical)



Spherical harmonic expansion

In the spherical harmonic decomposition the operator Tg must be
diagonal, leading to

Lemma. (Funk-Hecke)

Assume g(t) =
∑d

j=0 λ
g
j φj(t) is the unique expression of g(t) as

linear combination of (suitably normalized) Gegenbauer
polynomials. If

f = f0 + f1 + · · ·+ fd + . . .

is the spherical harmonic expansion of f ∈ R[S ] then we have

Tg (f ) = λg0 f0 + λg1 f1 + λg2 f2 + · · ·+ λgd fd .

Remark.

This implies that every equivariant map is essentially a univariate
convolution (and in particular spherically symmetrical)



Strategy

All of the previous results lead to the following strategy:

Given a black-box implementation of the radial/gauge fn. of E ,

1 Compute its harmonic components up to degree d .

2 Apply the Funk-Hecke formula with the special g = ud(t) to
smoothen (mollify) the result.

3 Use the resulting star function to define a
polyradial/polygauge body B which is a good uniform
approximation for E .

4 The geometric invariants of B are often provably close to
those of E and can often be computed exactly.



Example: degree 8
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Example: degree 20



Example: degree 25



Application

Definition.

The intersection body IL of a starbody L ⊂ Rn is the starshaped
set with radial function

ρIL(x) = Vol(L ∩ x⊥) =
1

n − 1

∫
Sn−1∩x⊥

ρL(y)n−1dµ(y)

This quantity equals R
(

1
n−1ρ

n−1
L

)
(x), where R denotes the

spherical radon transform of any function in L2(Sn−1, µ).

Question.

What is the Intersection Body of the cube [−1, 1]3 ?
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Example: IB of the cube [−1, 1]3

IB link

https://mauricio-velasco.github.io/SeminarioOML/IB_cube_v0.mp4


Approximation Quality

It is natural to ask whether the proposed approximation of polystar
bodies by polyradial bodies is efficient and whether there are much
better choices than polynomials.

Definition.

If A ⊆ C (Sn−1) is a set and N is an integer the Kolmogorov width
of A is defined as

WN(A) := inf
W⊆C(S)

(
sup
a∈A

d(a,V )

)
where the infimum runs over all linear subspaces V ⊆ C (S) of
dimension at most N.

In words, the Kolmogorv N-width measures the smallest (best
possible) worst-case uniform approximation error among all
subspaces V of dimension N when we want to approximate the
functions in A uniformly.
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Approximation quality

For any positive constant κ > 0, let Λ(κ) be the set of radial
functions of star-bodies with Lipschitz constant at most κ.

We estimate the Kolmogorov N-width of Λ(κ), proving in
particular that such starshaped sets cannot be approximated faster
than κ

d , up to multiplicative constant, by bodies with radial
functions lying on ANY subspace of continuous functions
dimension N with N := dim(R[S ]≤d).

We conclude that polyradial bodies are asymptotically optimal
approximators.
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Approximation quality

Theorem. (Meroni, Miller, -)

Given κ > 0, for all N ∈ Z large enough and any positive real β
such that Nβn+1 < 1, the inequality WN(Λ(κ)) ≥ κβ

2 holds. In
particular, there exists a positive constant C0 such that for all
sufficiently large d there exists a starbody L with ρL ∈ Λ(κ) such
that

‖ρL − p‖∞ ≥ C0
κ

d

for all polynomials p of degree d on S .

We conclude that polyradial bodies are asymptotically optimal
approximators.

Remark.

The proof extends an argument due to G.G. Lorentz [1960] from
Lipschitz functions in Rn to star-bodies.


