Towards a computational theory of star-shaped bodies.

Chiara Meroni Jared Miller Mauricio Velasco

Seminario de Optimización y ML Universidad de la República Marzo, 2025.

Definition.

• A **body** in ℝⁿ is a compact set B ⊆ ℝⁿ containing the origin in its interior.

Definition.

- A body in ℝⁿ is a compact set B ⊆ ℝⁿ containing the origin in its interior.
- A body is star-shaped with respect to x ∈ B if for every p ∈ B the line segment [x, p] joining x and p is entirely contained in B.

Definition.

- A body in ℝⁿ is a compact set B ⊆ ℝⁿ containing the origin in its interior.
- A body is star-shaped with respect to x ∈ B if for every p ∈ B the line segment [x, p] joining x and p is entirely contained in B.
- A **star-body** is a body which is star shaped with respect to the origin.



What information is needed to describe a star body?

- What **information** is needed to describe a star body?
- One of the second se

- What **information** is needed to describe a star body?
- One of the second se
- What are the natural invariants of star bodies and how to compute them effectively?

- What **information** is needed to describe a star body?
- One of the second se
- What are the natural invariants of star bodies and how to compute them effectively?
- How to model the space of star-bodies?

- What **information** is needed to describe a star body?
- One of the second se
- What are the natural invariants of star bodies and how to compute them effectively?
- How to model the space of star-bodies?

Solving questions (2) and (3) would give us a computational theory of star-bodies.

To describe a star-body $B \subseteq \mathbb{R}^n$ it suffices to specify how far does the body extend in each unit direction $\vec{u} \in S^{n-1}$.

To describe a star-body $B \subseteq \mathbb{R}^n$ it suffices to specify how far does the body extend in each unit direction $\vec{u} \in S^{n-1}$.

Definition.

The radial function of B is the function $\rho_B : S^{n-1} \to \mathbb{R}$

 $\rho_B(u) = \sup\{\lambda > 0 : \lambda u \in B\}$

To describe a star-body $B \subseteq \mathbb{R}^n$ it suffices to specify how far does the body extend in each unit direction $\vec{u} \in S^{n-1}$.

Definition.

The radial function of B is the function $\rho_B : S^{n-1} \to \mathbb{R}$

$$\rho_B(u) = \sup\{\lambda > 0 : \lambda u \in B\}$$

Equivalently we can think that B is like the unit ball of a norm and scale B to define a function in \mathbb{R}^n

Definition.

The gauge function of B is the function $\gamma_B : S^{n-1} \to \mathbb{R}$

$$\gamma_B(u) = \inf\{\lambda > 0 : \lambda B \ni u\}$$

To describe a star-body $B \subseteq \mathbb{R}^n$ it suffices to specify how far does the body extend in each unit direction $\vec{u} \in S^{n-1}$.

Definition.

The radial function of B is the function $\rho_B : S^{n-1} \to \mathbb{R}$

$$\rho_B(u) = \sup\{\lambda > 0 : \lambda u \in B\}$$

Equivalently we can think that B is like the unit ball of a norm and scale B to define a function in \mathbb{R}^n

Definition.

The gauge function of B is the function $\gamma_B : S^{n-1} \to \mathbb{R}$

$$\gamma_B(u) = \inf\{\lambda > 0 : \lambda B \ni u\}$$

Exercise. Prove that for every star-body *B* we have $\rho_B(u)\gamma_B(u) = 1.$

• A very interesting example of star-shaped bodies are the **convex bodies**. These are star-shaped with respect to every point.

- A very interesting example of star-shaped bodies are the **convex bodies**. These are star-shaped with respect to every point.
- There are star bodies which are star-shaped only with respect to the origin.

- A very interesting example of star-shaped bodies are the **convex bodies**. These are star-shaped with respect to every point.
- There are star bodies which are star-shaped only with respect to the origin.
- In between these two there are star-shaped bodies whose star-source set (defined as the set of points from which the set is star-shaped) contains a ball around the origin.

- A very interesting example of star-shaped bodies are the **convex bodies**. These are star-shaped with respect to every point.
- There are star bodies which are star-shaped only with respect to the origin.
- In between these two there are star-shaped bodies whose star-source set (defined as the set of points from which the set is star-shaped) contains a ball around the origin.

Theorem.

The star-source set of *B* contains a ball of radius r > 0 around the origin if and only if the gauge function $\gamma_B : S^2 \to \mathbb{R}$ is Lipschitz continuous. In this case 1/r is a valid Lipschitz constant.

We will focus on Lipschitz star bodies.

• Any positive, Lipschitz continuous function on the sphere S^{n-1} is the radial (resp. gauge) function of a good star body.

- Any positive, Lipschitz continuous function on the sphere S^{n-1} is the radial (resp. gauge) function of a good star body.
- It follows that we need to understand **positive**, Lipschitz continuous functions on the sphere S^{n-1} .

- Any positive, Lipschitz continuous function on the sphere Sⁿ⁻¹ is the radial (resp. gauge) function of a good star body.
- It follows that we need to understand **positive**, Lipschitz continuous functions on the sphere S^{n-1} .
- The ring of continuous real-valued functions on the sphere C(S) has the following two properties:
 - It is a Banach space with the supremum norm

$$||f - g||_{\infty} := \sup_{u \in S^{n-1}} |f(u) - g(u)|$$

• It contains an explicit family, the restrictions of polynomials in $\mathbb{R}[x_1, \ldots, x_n]$ to S^{n-1} .

- Any positive, Lipschitz continuous function on the sphere Sⁿ⁻¹ is the radial (resp. gauge) function of a good star body.
- It follows that we need to understand **positive**, Lipschitz continuous functions on the sphere S^{n-1} .
- The ring of continuous real-valued functions on the sphere C(S) has the following two properties:
 - It is a Banach space with the supremum norm

$$||f - g||_{\infty} := \sup_{u \in S^{n-1}} |f(u) - g(u)|$$

 It contains an explicit family, the restrictions of polynomials in ℝ[x₁,...,x_n] to Sⁿ⁻¹. This algebra, denoted ℝ[S] is dense in C(S) by the Stone-Weierstrass Theorem.

It follows that the following families of bodies are universal approximators

Definition.

A star body is called **polyradial** (resp. **polygauge**) if its radial function (resp. gauge function) $f : S^{n-1} \to \mathbb{R}$ is the restriction of a multivariate polynomial to S^{n-1} .

Consider the polynomial $p(x, y) = 32x^6 + 32y + 128$ for $(x, y) \in S$. This defines a polygauge body L_1 via $\gamma_{L_1}(x, y) = p(x, y)$ and a polyradial body L_2 via $\rho_{L_2}(x, y) = p(x, y)$. Consider the polynomial $p(x, y) = 32x^6 + 32y + 128$ for $(x, y) \in S$. This defines a polygauge body L_1 via $\gamma_{L_1}(x, y) = p(x, y)$ and a polyradial body L_2 via $\rho_{L_2}(x, y) = p(x, y)$.

Imagine we are given the radial (or gauge) functions f_E of a body E as a black-box which, given $u \in S^{n-1}$ returns $f_E(u)$.

Imagine we are given the radial (or gauge) functions f_E of a body E as a black-box which, given $u \in S^{n-1}$ returns $f_E(u)$.

Question.

- How to construct a polystar approximation of E?
- Are there quantitative estimates of their accuracy?
- Are poly-star bodies good approximators?

A radial/gauge function can be very complicated, so we will pass it through a polynomial *low pass filter*...

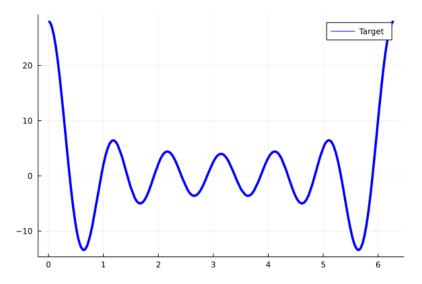
A radial/gauge function can be very complicated, so we will pass it through a polynomial *low pass filter*...

Definition.

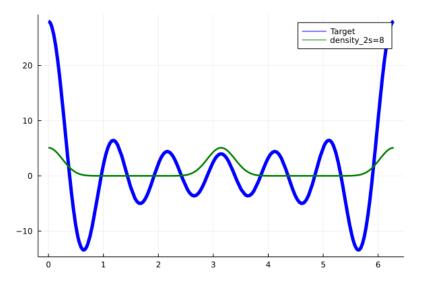
Let g(t) be a univariate polynomial which is nonnegative on [-1,1]. Define $T_g : R \to R$ via $T_g(f(x)) = h(x)$ where

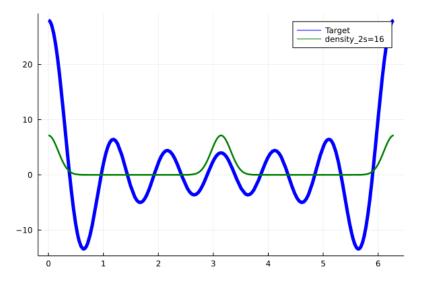
$$h(x) = \int_{S} g(\langle x, y \rangle) f(y) d\mu(y)$$

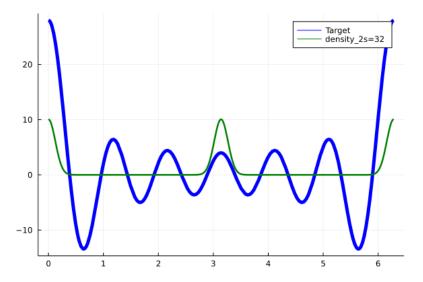
where μ is the (n-1)-dimensional volume measure.

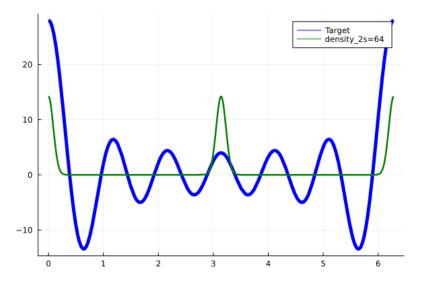


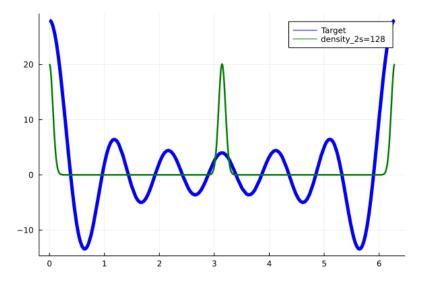
(ロト 4回 ト 4 ヨト 4 ヨト - ヨー のへの



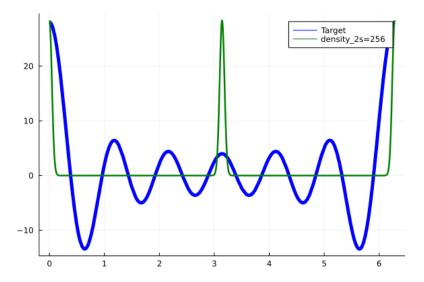


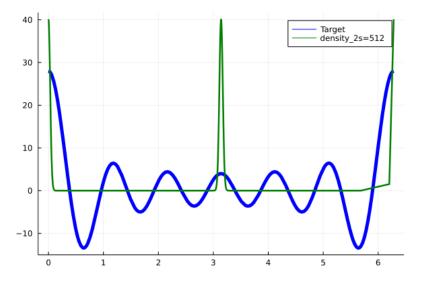


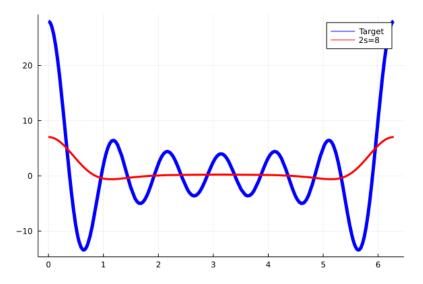




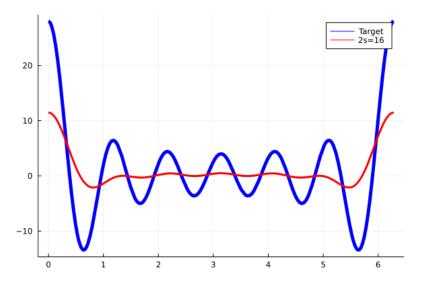
(ロ) (日) (日) (日) (日) (日) (日)



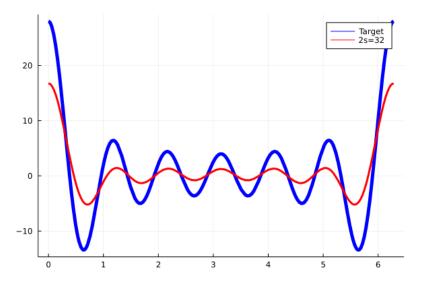




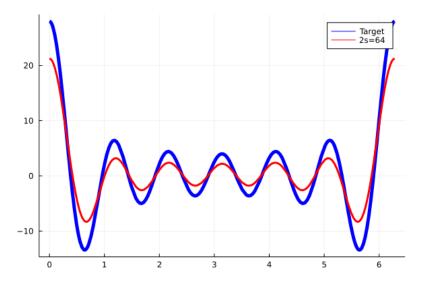
(ロト 4回 ト 4 ヨト 4 ヨト - ヨー のへの



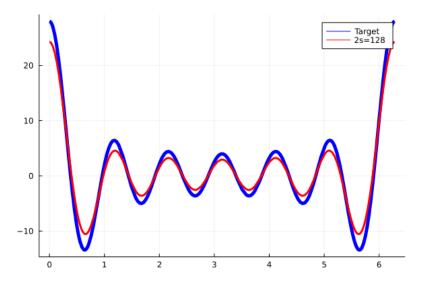
(ロト 4回 ト 4 ヨト 4 ヨト - ヨー のへの



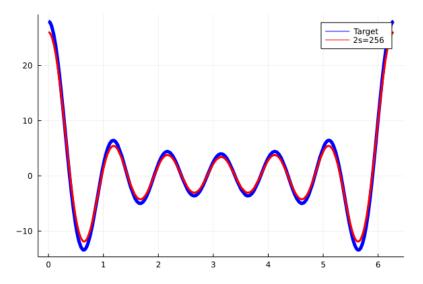
(ロト (母) (ヨ () () () () ()



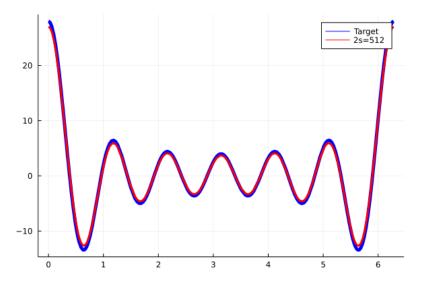
(ロト (日) (日) (日) (日) (日) (日)



(ロト (母) (ヨ () () () () ()



(ロト (日) (日) (日) (日) (日) (日)



(ロト (母) (ヨ () () () () ()

Let f be a Lipschitz function with Lipschitz constant κ on S^{n-1} . Then, there exists an explicit sequence of univariate nonnegative polynomials $\{g_d\}_d$ with $g_d : [-1,1] \to \mathbb{R}$ of degree d such that for $d \to \infty$,

$$\|f - T_g(f)\|_{\infty} \sim \frac{\pi(n-2)}{\sqrt{2}} \frac{\kappa}{d}$$

Let f be a Lipschitz function with Lipschitz constant κ on S^{n-1} . Then, there exists an explicit sequence of univariate nonnegative polynomials $\{g_d\}_d$ with $g_d : [-1,1] \to \mathbb{R}$ of degree d such that for $d \to \infty$,

$$\|f - T_g(f)\|_{\infty} \sim rac{\pi(n-2)}{\sqrt{2}} rac{\kappa}{d}.$$

Remark.

The previous Theorem improves an inequality of Newman and Shapiro [1964] later generalized by Ragozhin [1971].

Let f be a Lipschitz function with Lipschitz constant κ on S^{n-1} . Then, there exists an explicit sequence of univariate nonnegative polynomials $\{g_d\}_d$ with $g_d : [-1,1] \to \mathbb{R}$ of degree d such that for $d \to \infty$,

$$\|f - T_g(f)\|_{\infty} \sim rac{\pi(n-2)}{\sqrt{2}} rac{\kappa}{d}$$

Remark.

The previous Theorem improves an inequality of Newman and Shapiro [1964] later generalized by Ragozhin [1971].

Remark.

We also proved that the polygauge approximating bodies of a convex body are **automatically convex**.

Assume $n \geq 3$. Let f be a Lipschitz function with Lipschitz constant κ on S^{n-1} . Then, there exists a sequence of univariate nonnegative polynomials $\{g_d\}_d$ with $g_d : [-1,1] \to \mathbb{R}$ of degree d such that for $d \to \infty$,

$$\|f - T_{g_d}(f)\|_{\infty} \sim \frac{\pi(n-2)}{\sqrt{2}} \frac{\kappa}{d}$$

Remark.

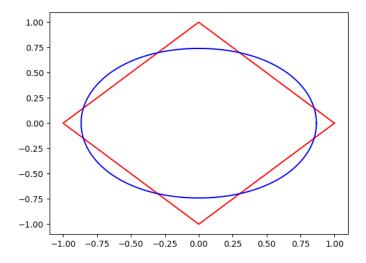
If f satisfies stronger differentiability hypotheses then the filter can be iterated on the error yielding faster convergence

Assume $n \geq 3$. Let f be a Lipschitz function with Lipschitz constant κ on S^{n-1} . Then, there exists a sequence of univariate nonnegative polynomials $\{g_d\}_d$ with $g_d : [-1,1] \to \mathbb{R}$ of degree d such that for $d \to \infty$,

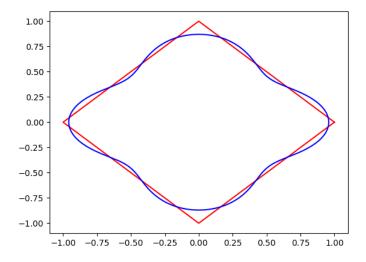
$$\|f - T_{g_d}(f)\|_{\infty} \sim \frac{\pi(n-2)}{\sqrt{2}} \frac{\kappa}{d}$$

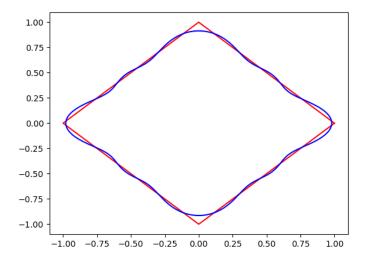
Remark.

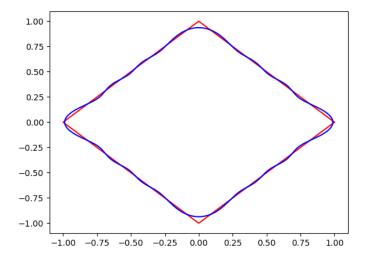
If f satisfies stronger differentiability hypotheses then the filter can be iterated on the error yielding faster convergence



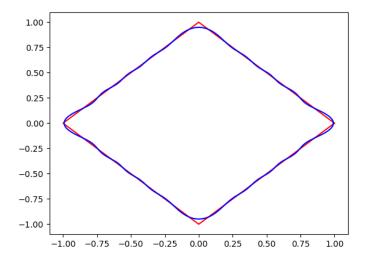
(ロ・・日・・日・・日・・日・ (日・







(ロ) (母) (臣) (臣) (臣) (日)



How to compute $T_{\varepsilon}(f)$

Definition.

Let g(t) be a univariate polynomial which is nonnegative on [-1,1]. Define $T_g : R \to R$ via $T_g(f(x)) = h(x)$ where

$$h(x) = \int_{S} g(\langle x, y \rangle) f(y) d\mu(y)$$

The maps T_g have the following remarkable property

Lemma.

For every $A \in SO(n)$ we have

 $T_g(f(Ax)) = T_g(f)(Ax)$

How to compute $T_{\varepsilon}(f)$

Definition.

Let g(t) be a univariate polynomial which is nonnegative on [-1,1]. Define $T_g : R \to R$ via $T_g(f(x)) = h(x)$ where

$$h(x) = \int_{S} g(\langle x, y \rangle) f(y) d\mu(y)$$

The maps T_g have the following remarkable property

Lemma.

For every $A \in SO(n)$ we have

$$T_g(f(Ax)) = T_g(f)(Ax)$$

in other words $T_g : \mathbb{R}[S] \to \mathbb{R}[S]$ is a morphism of SO(n) representations.

How to compute $T_{\varepsilon}(f)$

Definition.

Let g(t) be a univariate polynomial which is nonnegative on [-1,1]. Define $T_g : R \to R$ via $T_g(f(x)) = h(x)$ where

$$h(x) = \int_{S} g(\langle x, y \rangle) f(y) d\mu(y)$$

The maps T_g have the following remarkable property

Lemma.

For every $A \in SO(n)$ we have

$$T_g(f(Ax)) = T_g(f)(Ax)$$

in other words $T_g : \mathbb{R}[S] \to \mathbb{R}[S]$ is a morphism of SO(n) representations. This implies that all the maps Γ_g become simultaneously diagonal in **some natural basis**.

The ring $\mathbb{R}[S]$

Definition.

A homogeneous polynomial f of degree d in $\mathbb{R}[x_1, \ldots, x_n]$ is called harmonic if $\Delta f = 0$.

- ∢ ⊒ ▶

A homogeneous polynomial f of degree d in $\mathbb{R}[x_1, \ldots, x_n]$ is called harmonic if $\Delta f = 0$.

If $\mathcal{H}_d \subseteq \mathbb{R}[S]$ denotes the restrictions to the sphere of the homogeneous harmonic polynomials of degree d then

• $\mathcal{H}_d = \mathbb{R}[S]_{\leq d} \cap \mathbb{R}[S]_{\leq d-1}^{\perp}$ is an irreducible SO(n) representation and

•
$$\mathbb{R}[S] = \bigoplus_{d=0}^{\infty} \mathcal{H}_d$$

A homogeneous polynomial f of degree d in $\mathbb{R}[x_1, \ldots, x_n]$ is called harmonic if $\Delta f = 0$.

If $\mathcal{H}_d \subseteq \mathbb{R}[S]$ denotes the restrictions to the sphere of the homogeneous harmonic polynomials of degree d then

• $\mathcal{H}_d = \mathbb{R}[S]_{\leq d} \cap \mathbb{R}[S]_{\leq d-1}^{\perp}$ is an irreducible SO(n) representation and

•
$$\mathbb{R}[S] = \bigoplus_{d=0}^{\infty} \mathcal{H}_d$$

Definition.

In particular, every $f \in L^2(S^{n-1}, \mu)$ has a unique expression as a sum $f = \sum_{j=0}^{\infty} f_j$ with $f_j \in \mathcal{H}_j$, the spherical harmonic decomposition of f.

Spherical harmonic expansion

In the spherical harmonic decomposition the operator T_g must be diagonal, leading to

Spherical harmonic expansion

In the spherical harmonic decomposition the operator T_g must be diagonal, leading to

Lemma. (Funk-Hecke)

Assume $g(t) = \sum_{j=0}^{d} \lambda_j^g \phi_j(t)$ is the unique expression of g(t) as linear combination of (suitably normalized) Gegenbauer polynomials. If

$$f = f_0 + f_1 + \dots + f_d + \dots$$

is the spherical harmonic expansion of $f \in \mathbb{R}[S]$ then we have

$$T_g(f) = \lambda_0^g f_0 + \lambda_1^g f_1 + \lambda_2^g f_2 + \dots + \lambda_d^g f_d.$$

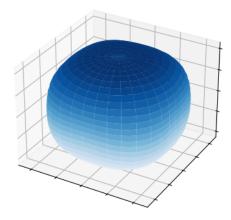
Remark.

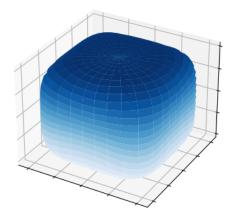
This implies that every equivariant map is essentially a univariate convolution (and in particular spherically symmetrical)

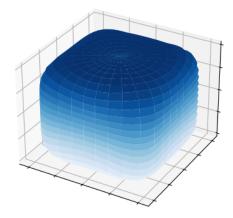
All of the previous results lead to the following strategy:

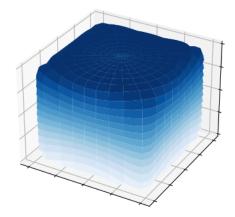
Given a black-box implementation of the radial/gauge fn. of E,

- Compute its harmonic components up to degree d.
- Apply the Funk-Hecke formula with the special $g = u_d(t)$ to smoothen (mollify) the result.
- Use the resulting star function to define a polyradial/polygauge body B which is a good uniform approximation for E.
- The geometric invariants of B are often provably close to those of E and can often be computed exactly.









The intersection body IL of a starbody $L \subset \mathbb{R}^n$ is the starshaped set with radial function

$$\rho_{IL}(x) = \operatorname{Vol}(L \cap x^{\perp}) = \frac{1}{n-1} \int_{S^{n-1} \cap x^{\perp}} \rho_L(y)^{n-1} d\mu(y)$$

The intersection body IL of a starbody $L \subset \mathbb{R}^n$ is the starshaped set with radial function

$$\rho_{IL}(x) = \operatorname{Vol}(L \cap x^{\perp}) = \frac{1}{n-1} \int_{S^{n-1} \cap x^{\perp}} \rho_L(y)^{n-1} d\mu(y)$$

This quantity equals $\mathcal{R}\left(\frac{1}{n-1}\rho_L^{n-1}\right)(x)$, where \mathcal{R} denotes the spherical radon transform of any function in $L^2(S^{n-1},\mu)$.

The intersection body IL of a starbody $L \subset \mathbb{R}^n$ is the starshaped set with radial function

$$\rho_{IL}(x) = \operatorname{Vol}(L \cap x^{\perp}) = \frac{1}{n-1} \int_{S^{n-1} \cap x^{\perp}} \rho_L(y)^{n-1} d\mu(y)$$

This quantity equals $\mathcal{R}\left(\frac{1}{n-1}\rho_L^{n-1}\right)(x)$, where \mathcal{R} denotes the spherical radon transform of any function in $L^2(S^{n-1},\mu)$.

Question.

What is the Intersection Body of the cube $[-1,1]^3$?

IB link

▶ < ≣ ▶ <</p>

æ

æ

Approximation Quality

It is natural to ask whether the proposed approximation of polystar bodies by polyradial bodies is efficient and whether there are much better choices than polynomials.

Approximation Quality

It is natural to ask whether the proposed approximation of polystar bodies by polyradial bodies is efficient and whether there are much better choices than polynomials.

Definition.

If $A \subseteq C(S^{n-1})$ is a set and N is an integer the Kolmogorov width of A is defined as

$$\mathcal{W}_{\mathcal{N}}(A) := \inf_{W \subseteq C(S)} \left(\sup_{a \in A} d(a, V) \right)$$

where the infimum runs over all linear subspaces $V \subseteq C(S)$ of dimension at most N.

Approximation Quality

It is natural to ask whether the proposed approximation of polystar bodies by polyradial bodies is efficient and whether there are much better choices than polynomials.

Definition.

If $A \subseteq C(S^{n-1})$ is a set and N is an integer the Kolmogorov width of A is defined as

$$\mathcal{W}_{\mathcal{N}}(A) := \inf_{W \subseteq C(S)} \left(\sup_{a \in A} d(a, V) \right)$$

where the infimum runs over all linear subspaces $V \subseteq C(S)$ of dimension at most N.

In words, the Kolmogorv N-width measures the smallest (best possible) worst-case uniform approximation error among all subspaces V of dimension N when we want to approximate the functions in A uniformly.

For any positive constant $\kappa > 0$, let $\Lambda(\kappa)$ be the set of radial functions of star-bodies with Lipschitz constant at most κ .

For any positive constant $\kappa > 0$, let $\Lambda(\kappa)$ be the set of radial functions of star-bodies with Lipschitz constant at most κ .

We estimate the Kolmogorov *N*-width of $\Lambda(\kappa)$, proving in particular that such starshaped sets cannot be approximated faster than $\frac{\kappa}{d}$, up to multiplicative constant, by bodies with radial functions lying on **ANY** subspace of continuous functions dimension *N* with $N := \dim(\mathbb{R}[S]_{\leq d})$.

For any positive constant $\kappa > 0$, let $\Lambda(\kappa)$ be the set of radial functions of star-bodies with Lipschitz constant at most κ .

We estimate the Kolmogorov *N*-width of $\Lambda(\kappa)$, proving in particular that such starshaped sets cannot be approximated faster than $\frac{\kappa}{d}$, up to multiplicative constant, by bodies with radial functions lying on **ANY** subspace of continuous functions dimension *N* with $N := \dim(\mathbb{R}[S]_{\leq d})$.

We conclude that polyradial bodies are asymptotically optimal approximators.

Theorem. (Meroni, Miller, -)

Given $\kappa > 0$, for all $N \in \mathbb{Z}$ large enough and any positive real β such that $N\beta^{n+1} < 1$, the inequality $\mathcal{W}_N(\Lambda(\kappa)) \ge \frac{\kappa\beta}{2}$ holds. In particular, there exists a positive constant C_0 such that for all sufficiently large d there exists a starbody L with $\rho_L \in \Lambda(\kappa)$ such that

$$\|\rho_L - p\|_{\infty} \ge C_0 \frac{\kappa}{d}$$

for all polynomials p of degree d on S.

We conclude that polyradial bodies are asymptotically optimal approximators.

Remark.

The proof extends an argument due to G.G. Lorentz [1960] from Lipschitz functions in \mathbb{R}^n to star-bodies.