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The Manifold Hypothesis

Statistical exploration of the manifold hypothesis – Whiteley, Gray, Rubin-Delanchy (2025),
arXiv:2208.11665v5
High-dimensional data often concentrate near a low-dimensional manifold embedded in ambient
space.

(Cayton, 2005) “...the dimensionality of many data sets is only artificially high; though each
data point consists of perhaps thousands of features, it may be described as a function of
only a few underlying parameters. That is, the data points are actually samples from a low-
dimensional manifold that is embedded in a high-dimensional space”

Observed empirically in images, speech, genomics, neuroscience, . . .
Underlies manifold learning, nonlinear dimension reduction, deep learning theory.
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Motivating Examples

Car images: 75 grayscale images of resolution
384 × 288, camera angles
PCA reveals a loop structure (circle of angles). Planaria cells: n = 5000, p = 5821 gene expressions,

PCA+t-SNE shows branching tree-like structure.
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Latent Metric Model

Assume data matrix Y ∈ Rn×p arises from:

Yij = Xj(Zi) + σEij .

where
Latent variables Zi ∼ µ i.i.d, µ Borel measure in compact metric space (Z, dZ )
Random functions Xj : Z → R, E

[
Xj(z)2] < ∞ ∀z ∈ Z

Noise Eij , zero mean, unit variance. Matrix E is independent across columns, and element in
different rows are uncorrelated
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Mean Correlation Kernel

Mean correlation kernel f : Z × Z → R

f (z , z ′) = 1
p

p∑
j=1

E[Xj(z)Xj(z ′)].

Assumption 1: For each j = 1, . . . , p, E [Xj(z)Xj(z ′)] is a continuous function of (z , z ′) ∈ Z ×Z.

(Mercer’s theorem). If Z is a compact metric space, µ a finite Borel measure supported on Z and
f : Z × Z → R is a symmetric, positive semi-definite, continuous function, there exists nonnegative
numbers (λf

k)k≥1, λf
1 ≥ λf

2 ≥ · · · , and R-valued functions (uf
k)k≥1 orthonormal in L2(µ), such that:

f (z , z ′) =
∞∑

k=1
λf

kuf
k(z)uf

k(z ′), z , z ′ ∈ Z,

where the convergence is absolute and uniform.

B. Marenco Statistical Exploration of the Manifold Hypothesis 5 / 36



Why is f Positive Semi-Definite?

Each fj(z , z ′) := E[Xj(z)Xj(z ′)] is a positive semi-definite kernel:
For any a1, . . . , an ∈ R and z1, . . . , zn ∈ Z,

n∑
i,k=1

aiakE[Xj(zi)Xj(zk)] = E

( n∑
i=1

aiXj(zi)
)2
 ≥ 0

since the square expands to a double sum:(∑
i

aiXj(zi)
)2

=
∑
i,k

aiakXj(zi)Xj(zk)

f (z , z ′) = 1
p
∑p

j=1 fj(z , z ′) is an average of PSD kernels, so it is PSD.
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Feature map

By Mercer’s theorem:

f (z , z ′) =
∞∑

k=1
λf

kuf
k(z)uf

k(z ′) = ⟨ϕ(z), ϕ(z ′)⟩ℓ2

where we define the feature map ϕ : Z → ℓ2 as:

ϕ(z) =
[
(λf

1)1/2uf
1(z), (λf

2)1/2uf
2(z), . . .

]
Manifold: M = {ϕ(z) : z ∈ Z}⊂ ℓ2 since ∥ϕ(z)∥2

ℓ2
= f (z , z), Z is compact and f is continuous

r = rank(f ) i.e. largest k such that λf
k > 0, with r := ∞ if λf

k > 0 for all k ≥ 1

If r < ∞, write:
ϕ(z) =

[
(λf

1)1/2uf
1(z), (λf

2)1/2uf
2(z), . . . , (λf

r )1/2uf
r (z)

]
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Relating data inner products to feature map inner products
LMM model: data matrix Y ∈ Rn×p arises from:

Yij = Xj(Zi) + σEij .

Proposition 1: If A1 holds, then

Yi
m.s.= p1/2Wϕ(Zi) + σEi , E

[
W⊤W

]
= Ir

where
Wjk := 1

(pλf
k)1/2

∫
Z

Xj(z)uf
k(z)µ(dz)

i.e. p−1/2Yi is a noisy, random projection of ϕ(Zi)
Proof key ingredient: (uk , λk) are L2(µ)-orthonormal eigenfunctions and eigenvalues of the integral
operator Tf associated with the kernel f and the measure µ:

(Tf ψ)(z) :=
∫

Z
f (z , z ′)ψ(z ′) dµ(z ′)
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Relating data inner products to feature map inner products

Proposition 1: If A1 holds, then

Yi
m.s.= p1/2Wϕ(Zi) + σEi , E

[
W⊤W

]
= Ir

Then:
1
pE [⟨Yi ,Yj⟩|Zi ,Zj ] = ⟨ϕ(Zi),E

[
W⊤W

]
ϕ(Zj)⟩ℓ2 + σ2 1

pE [⟨Ei ,Ej⟩]

= ⟨ϕ(Zi), ϕ(Zj)⟩ℓ2 + σ21i=j

Hence, by the law of large numbers:

|p−1⟨Yi ,Yj⟩ − ⟨ϕ(Zi), ϕ(Zj)⟩ℓ2 − σ21i=j | → 0 when p → ∞

(under weak dependency and bounded moments assumptions)
This implies:

|p−1∥Yi − Yj∥2
2 − ∥ϕ(Zi) − ϕ(Zj)∥2

ℓ2
− 2σ2| → 0 when p → ∞
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Topological Equivalence
ϕ : Z → M is a homeomorphism (continuous, bijective, has continuous inverse) between (Z, dZ) and
(M, dM) where dM(·, ·) = ∥· − ·∥ℓ2

Continuity of ϕ: dZ(z , z ′) → 0 implies dM(ϕ(z), ϕ(z ′)) = ∥ϕ(z) − ϕ(z ′)∥ℓ2
→ 0

∥ϕ(z) − ϕ(z ′)∥2
ℓ2

= ∥ϕ(z)∥2
ℓ2

+ ∥ϕ(z ′)∥2
ℓ2

− 2⟨ϕ(z), ϕ(z ′)⟩ℓ2 = f (z , z) + f (z ′, z ′) − 2f (z , z ′)

and f is continuous by A1.
Since ϕ is surjective by definition, if it is one-to-one its inverse is automatically continuous since Z is
compact

Assumption 2 (Distinguishability):

p∑
j=1

E[|Xj(z) − Xj(z ′)|2] > 0 ∀z ̸= z ′.

Obs: A2 is equivalent to: for each z , z ′ ∈ Z with z ̸= z ′ there exists ξ ∈ Z s.t. f (z , ξ) ̸= f (z ′, ξ)
B. Marenco Statistical Exploration of the Manifold Hypothesis 10 / 36



Topological Equivalence

Proposition 2: ϕ : Z → M is a homeomorphism if and only if A2 holds

Proof:

∥ϕ(z) − ϕ(z ′)∥2
ℓ2

= ∥ϕ(z)∥2
ℓ2

+ ∥ϕ(z ′)∥2
ℓ2

− 2⟨ϕ(z), ϕ(z ′)⟩ℓ2 = f (z , z) + f (z ′, z ′) − 2f (z , z ′)

= 1
p

p∑
j=1

E
[
|Xj(z)|2

]
+ 1

p

p∑
j=1

E
[
|Xj(z ′)|2

]
− 2

p

p∑
j=1

E [Xj(z)Xj(z ′)]

= 1
p

p∑
j=1

E
[
|Xj(z) − Xj(z ′)|2

]
Hence ϕ is one-to-one iff

∑p
j=1 E[|Xj(z) − Xj(z ′)|2] > 0 ∀z ̸= z ′
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Topological Equivalence

Since ϕ is a homeomorphism between (Z, dZ) and (M, dM):
Can be transformed between each other by bending, twisting, stretching and folding, but not
cutting, puncturing or joining
Same number of connected components, 1-dimensional loops and k-dimensional “holes” as each
other→ this is why persistent homology analysis works
They have the same covering dimension→ if Z is low-dimensional, M is low-dimensional
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Metric Equivalence (Isometry)

Assume Xj ’s are weakly stationary:
E [Xj(z)] is constant in z
E [(Xj(z) − E [Xj(z)])(Xj(z ′) − E [Xj(z ′)])] only depends on dM(z , z ′)

Then f (z , z ′) would also depend only on dM(z , z ′)

Assumption 3: Z ⊂ Rd , and there exists a continuous path in Z of finite length between any
two points in Z
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Paths on a manifold

Let x , x ′ ∈ M, a path in M is a continuous function γ : [0, 1] → M such that γ(0) = x and γ(1) = x ′

A partition P of [0, 1] is a non-decreasing sequence 0 = t0 < t1 < · · · < tn = 1.
For a path γ and partition P, define:

χ(γ,P) :=
n∑

k=1
∥γ(tk) − γ(tk−1)∥ℓ2 .

The length of the path is:
L(γ) := sup

P
χ(γ,P),

where the supremum is over all partitions.
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Geodesic Distances in M and Z

Let z , z ′ ∈ Z ⊂ Rd and η : [0, 1] → Z be a path with η(0) = z , η(1) = z ′. Define length similarly:

χ(η,P) :=
n∑

k=1
∥η(tk) − η(tk−1)∥Rd , L(η) := sup

P
χ(η,P).

Then the geodesic distances are defined by:

dgeo
M (x , x ′) := ı́nf

γ:γ(0)=x ,γ(1)=x ′
L(γ),

dgeo
Z (z , z ′) := ı́nf

η:η(0)=z,η(1)=z′
L(η),

where the infima are taken over all continuous paths in M and Z respectively.
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Metric Equivalence (Isometry)

Proposition 3: Assume A1, A2 and A3 hold. Define D := {(z , z), z ∈ Z} ⊂ Z × Z. If
f (z , z ′) = g(∥z − z ′∥2

2) for all z , z ′ in an open neighbourhood of D and g is twice continuously
differentiable and g ′(0) < 0, then

dgeo
M (ϕ(z), ϕ(z ′)) =

√
−2g ′(0)dgeo

Z (z , z ′)

Proof idea: Show that ϕ is a bi-Lipschitz homeomorphism between Z and M.Then, use that for any
path γ in M of finite length, there exists a path η in Z such that the following holds:
For any ε > 0 there exists a partition Pε such that for any partition P = (t0, ..., tn) satisfying Pε ⊂ P:∣∣∣∣∣L(γ) −

n∑
k=1

⟨η(tk) − η(tk−1),Hη(tk−1)(η(tk) − η(tk−1))⟩1/2

∣∣∣∣∣ ≤ ε

where (Hξ)ij := ∂2f
∂zi ∂z′

j

∣∣∣
(ξ,ξ)

for ξ ∈ Z
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Isometry on the Sphere

If Z is a sphere, Proposition 3 then becomes:

Proposition 4: Assume A1 and A2. If Z = {z ⊂ Rd : ∥z∥2 = 1} and f (z , z ′) = g(⟨z , z ′⟩L2) for
all z , z ′ in an open neighbourhood of D and g is twice continuously differentiable and g ′(1) > 0,
then

dgeo
M (ϕ(z), ϕ(z ′)) =

√
g ′(1)dgeo

Z (z , z ′)
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Smoothness to concentration in a low-dimensional subspace

When Z ⊂ Rd , we say that f is smooth if it is the restriction of a smooth function on Rd × Rd to
Z × Z.

Low-rank approximation: for s < r = rankf , define the truncated map ϕs : Z → ℓ2 as

ϕs(z) =
[
(λf

1)1/2uf
1(z), (λf

2)1/2uf
2(z), . . . , (λf

s )1/2uf
s (z), 0, . . .

]
Eigenvalues λf

i measure of how well Ms := ϕs(Z) approximates M through mean square error:

E
[
∥ϕ(Zi) − ϕs(Zi)∥2

ℓ2

]
=
∑
k>s

λf
kE
[
|uf

k(Zi)|
]

=
∑
k>s

λf
k

Since rate of decay of the λf
i is related to the smoothness of the kernel f taking s suitably large the

first s coordinates of ϕ provide a good approximation to M, even if r = ∞
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Smoothness to concentration in a low-dimensional subspace

When s ≤ p smoothness also implies each Yi concentrates around the (at most) s-dimensional subspace
of Rp spanned by the first s columns of W

Remember Proposition 1: Yi
m.s.= p1/2Wϕ(Zi) + σEi , E

[
W⊤W

]
= Ir , so:

E
[∥∥∥Yi − p1/2Wϕs(zi)

∥∥∥2

2

]
= E

[∥∥∥p1/2Wϕ(Zi) + σEi − p1/2Wϕs(zi)
∥∥∥2

2

]
= pE

[
∥ϕ(Zi) − ϕs(Zi)∥2

ℓ2

]
+ σ2E

[
∥Ei∥2

2

]
= p

∑
k>s

λf
k + pσ2
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Visual example

Z ⊂ R3 is a torus, µ is uniform distribution. Sample
Z1, . . . ,Z4000:

X1, . . . ,Xp i.i.d gaussian with covariance function
f (z , z ′) = exp(−∥z − z ′∥2

2)

Numerical approximations to the first 1-3, 4-6 and
7-9 dimensions of ϕ(Zi) using PCA:

Global shape of M, when viewed three dimensions at a time, is qualitatively different to the global
shape of Z
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Visual example

However,assumptions A1, A2 and A3, hold in this example

Theoretic scaling factor for geodesic distances is
√

−g ′(0) =
√

2

Geodesic distances computed using nearest-neighbour graph (more on this coming up)
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Dimension Reduction by PCA

Embed Yi ’s into Rs via top-s eigenvectors Vs of Y ⊤Y :

ζi = V ⊤
s Yi

Assuming Xi ’s are independent, have finite fourth moment and rank(f ) = r < ∞

Theorem 1: If s = r , there exists an orthogonal matrix Q ∈ Rr×r such that as n, p/n → ∞,

máx
i

∥∥p−1/2Qζi − ϕ(Zi)
∥∥

2 = Op

(
1√
n +

√
n
p

)
.

ϕ(Z1), . . . , ϕ(Zn) can be recovered from p−1/2ζ1, ..., p−1/2ζn, up to an orthogonal transformation

Therefore, PCA can be viewed as de-noising + signal extraction

Viewed as sets, point clouds {p−1/2ζi}i=1,...,n and {ϕ(Zi)}i converge to each other in Hausdorff
distance (up to Q)
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Workflow Overview

1. Dimension Selection (r̂) via Wasserstein distance

2. PCA Embedding to R̂r

3. Spherical Projection ζi/∥ζi∥
4. Nearest Neighbour Graph on projected points
5. Analysis: shortest paths, MST, topology (persistent homology)
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Step 1: Dimension Selection

Split data into two halves. For each ρ, project first
half onto top-ρ PC subspace, compute Wasserstein
W2 to second half in Rp. Choose

r̂ = arg ḿın
1≤ρ≤ρmáx

W2
(
Y (1)Πρ, Y (2)).

where for A,B ∈ Rm×d :

W2
2 (A,B) := ḿın

π

1
m
∑

∥Ai − Bπi∥2
2

Balances bias–variance under LMM.
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Step 2: PCA Embedding

Compute ζi = V ⊤
r̂

Yi , rescale p−1/2. Theorem 1 ensures ζi approx. ϕ(Zi).
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Step 3: Spherical Projection

When f (z , z) varies, use extended model Yij = αiXj(Zi) + σEij . After PC embedding, project

ζsp
i = ζi

∥ζi∥
,

recovers ϕ(Zi) up to scale.
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Step 4: Nearest Neighbour Graph

Build ϵ-NN or k-NN graph on {ζsp
i } with weights dS(u, v) = arc cos(u, v ). Compute:

Geodesic estimates Dij via shortest paths.
Persistent homology of the graph.
Minimum spanning tree for visualization.
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Example 1: Car Images

n = 72, p = 110592, angles θi = 0, 5, . . . , 355◦.
Selected r̂ = 11. Persistent H0/H1: loop
recovered.
Shortest-path vs angular distance: linear
(isometry up to scale).
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Example 2: Planaria Transcriptomics

n = 5000, p = 5821. Cell types hypothesized to
form tree.
r̂ ≈ 14. Nearest neighbour graph shows
branching.
Homology: β0 = 1, β1 = 0, consistent with tree.
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Example 3: Temperature Time Series

Daily temperature curves, n years, p time points.
Hypothesis: latent domain is sphere
(geographical location).
LMM reveals seasonal loop and anomalies.
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Special Case of LMM: IID Features

Suppose Xj(z) = hj(z) where hj are i.i.d. samples from a Gaussian process with mean zero and
covariance kernel f . Then:

Mean correlation kernel is exactly f (z , z ′).
The feature map ϕ(z) recovers the GP kernel structure.
PCA performs kernel PCA on f .
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Special Case of LMM: Linear Features

Let Z ⊂ Rd and Xj(z) = w⊤
j z where wj ∈ Rd are i.i.d. with mean zero and identity covariance.

Then f (z , z ′) = z⊤z ′, i.e., a linear kernel.
Feature map: ϕ(z) = z , the identity embedding.
LMM recovers classical linear factor models (e.g., probabilistic PCA).
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Special Case of LMM: Spiked Covariance Model
Let X ∈ Rn×p be a data matrix with E[X ⊤X ] of rank r . Perform its eigendecomposition:

1
nE[X ⊤X ] = V ΛV ⊤,

with V ∈ Rp×r orthonormal and Λ = diag(λ1, . . . , λr ). Define

Z = XV Λ−1/2.

Then one checks:

E[Z⊤Z ] = nIr ,V ⊤V = Ir ,

X = ZΛ1/2V ⊤, a.s.,

where the last equality follows because

E∥X − ZΛ1/2V ⊤∥2
F = trE[(X − ZΛ1/2V ⊤)⊤(X − ZΛ1/2V ⊤)] = 0.

Adding isotropic noise E yields spiked covariance model

Y = ZΛ1/2V ⊤ + σE .
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Special Case of LMM: Finite Mixture Model

Suppose Z = {1, . . . ,K} and Zi indicate mixture components. Let means m1, . . . ,mK ∈ Rp and

Xj(z) = m(j)
z

be the jth coordinate of mz . Then:
f (z , z ′) = 1

p ⟨mz ,mz′⟩, a rank-K kernel.
Data follow a mixture of K point clusters on the manifold {m1, . . . ,mK }.
Nearest-neighbor graph recovers cluster structure.
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Conclusions and Future Work

LMM provides statistical basis for the Manifold Hypothesis.
Homeomorphism and isometry connect latent and observed manifolds.
PCA + Wasserstein + graph methods enable exploration.
Future: non-Euclidean latent domains, faster algorithms, robustness analysis.
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