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The Manifold Hypothesis

o Statistical exploration of the manifold hypothesis — Whiteley, Gray, Rubin-Delanchy (2025),
arXiv:2208.11665v5

@ High-dimensional data often concentrate near a low-dimensional manifold embedded in ambient
space.

(Cayton, 2005) “...the dimensionality of many data sets is only artificially high; though each
data point consists of perhaps thousands of features, it may be described as a function of
only a few underlying parameters. That is, the data points are actually samples from a low-
dimensional manifold that is embedded in a high-dimensional space”

@ Observed empirically in images, speech, genomics, neuroscience, ...

@ Underlies manifold learning, nonlinear dimension reduction, deep learning theory.
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Motivating Examples

24 0f 72 photos in the data set, taken from camera angles 0,15,30..,355 degrees
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Car images: 75 grayscale images of resolution
384 x 288, camera angles

PCA reveals a loop structure (circle of angles).
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Figure 2: Planaria example. Left: first 2 dimensions of the PCA embedding, Right: representation
of the data in 2 dimensions obtained by first reducing to 14 dimensions using PCA, then applying
t-SNE.

Planaria cells: n = 5000, p = 5821 gene expressions,
PCA+t-SNE shows branching tree-like structure.
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Latent Metric Model

Assume data matrix Y € R"*P arises from:
Yj = Xi(Zi) + oEj.

where
o Latent variables Z; ~ p i.i.d, ;o Borel measure in compact metric space (£, dz)
e Random functions X; : Z - R, E [Xj(2)’] <coVze Z

@ Noise Ej;, zero mean, unit variance. Matrix E is independent across columns, and element in
different rows are uncorrelated
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Mean Correlation Kernel

Mean correlation kernel f : Z x Z - R

= = EP(X ()

Assumption 1: For each j =1,...,p, E[X;(2)X;(z")] is a continuous function of (z,z') € Zx Z.

(Mercer’s theorem). If Z is a compact metric space, y a finite Borel measure supported on Z and
f: Zx Z — R isasymmetric, positive semi-definite, continuous function, there exists nonnegative
numbers (A )k>1, Al > A5 > ..., and R-valued functions (uf)x>1 orthonormal in Ly(p), such that:

Z/\ uf(z)uf (), z,7 €2,
where the convergence is absolute and uniform.
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Why is f Positive Semi-Definite?

e Each fi(z,2') :=E[Xj(2)Xj(2')] is a positive semi-definite kernel:

@ Forany aj,...,ap, € Rand z,...,z, € Z,
2
ZaakE[X(z,) (z)]=E <ZaX z,> >0
i,k=1

since the square expands to a double sum:

(Z a,-XJ- Zj ) Z aj akX (Z, Zk)

o f(z,2')= 137 fi(z,2') is an average of PSD kernels, so it is PSD.
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Feature map

By Mercer's theorem:

oo

f(z,2) =Y Muf(2)ul(z)) = (6(2), 6(2"))es

k=1

where we define the feature map ¢ : Z — ¥, as:

6(2) = |(WDY2u(2), ()20 (2), .. |

Manifold: M = {¢(z) : z € Z}C £? since H¢>(z)||§2 = f(z,z), Z is compact and f is continuous
r = rank(f) i.e. largest k such that Al >0, with r := oo if \f > 0 for all kK > 1

If r < oo, write:
P(z) = [(/\f)l/ZUf(Z), (A2 (2), ..., (A)YPul(2)
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Relating data inner products to feature map inner products

LMM model: data matrix Y € R"*P arises from:
Yj = Xi(Zi) + oEj.

Proposition 1: If Al holds, then
Y; Z pPW¢(Z) + oE;, E[WTW] =1,

where

1
Wi = x|, Xl

\

i.e. p~1/2Y; is a noisy, random projection of ¢(Z;)

Proof key ingredient: (ug, \x) are Ly(u)-orthonormal eigenfunctions and eigenvalues of the integral
operator T associated with the kernel f and the measure p:

(Tr)(z / f(z,2') du(z')
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Relating data inner products to feature map inner products

Proposition 1: If Al holds, then

Y "= pPWe(Z) + o, E[WTW] =1,

Then:
CELY,Y,)12: 2] = (9(Z). B [WTW] 0(Z)s, + 0 EI(Ex E)
= (H(Z), d(Z))e, + 0°1i;
Hence, by the law of large numbers:
"N Y)) = (&(Z), 3(Z))e, — 07 1i—j| — O when p — oo

(under weak dependency and bounded moments assumptions)

This implies: , ,
P HIY; = Yill; = 16(Z) = &(Z)l;, — 20%| — 0 when p — oc
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Topological Equivalence

¢ Z — M is a homeomorphism (continuous, bijective, has continuous inverse) between (Z, dz) and
(Ma d,’\/l) where d/\/!(’v ) - H - 'Hiz

Continuity of ¢: dz(z,2") — 0 implies dr(d(2), ¢(2')) = ||6(2) — ¢(2')ll,, — O
lo(z) = &7, = 6217, + I6(2 Iy, — 2(6(2), (2 ))ex = F(z,2) + F(2,2') = 2f (2, 2')
and f is continuous by Al.

Since ¢ is surjective by definition, if it is one-to-one its inverse is automatically continuous since Z is
compact

Assumption 2 (Distinguishability):

S EX(2) - X()P] >0 V27

Obs: A2 is equivalent to: for each z,z’ € Z with z # Z’ there exists £ € Z s.t. f(z,£) # f(Z/,€)

S e o e Ve et | 050



Topological Equivalence

Proposition 2: ¢ : Z — M is a homeomorphism if and only if A2 holds

Proof:
6(2) — $(2)7, = l16(2) 12, + [6(2)II2, — 2(6(2), §(2'))e, = F(2,2) + £(2',2) — 2£(2,2")
= LY B IXF 5 R - 2 Y B @X(E)

= Y B - X
j=1

Hence ¢ is one-to-one iff 37, E[|X;(2) — X;(2')]’] >0 Vz# 2’
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Topological Equivalence

Since ¢ is a homeomorphism between (Z,dz) and (M, duy):

@ Can be transformed between each other by bending, twisting, stretching and folding, but not
cutting, puncturing or joining

@ Same number of connected components, 1-dimensional loops and k-dimensional “holes” as each
other— this is why persistent homology analysis works

@ They have the same covering dimension— if Z is low-dimensional, M is low-dimensional
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Metric Equivalence (Isometry)

Assume X;'s are weakly stationary:

e E[Xj(z)] is constant in z

o E[(X(2) - EX(2))(X(2') — EDX(2)])] only depends on du(z.2)
Then f(z,z’) would also depend only on du(z, z")

Assumption 3: Z C RY and there exists a continuous path in Z of finite length between any
two points in Z
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Paths on a manifold

Let x,x" € M, a path in M is a continuous function ~ : [0,1] — M such that v(0) = x and (1) = x’
A partition P of [0,1] is a non-decreasing sequence 0 = to < t; < --- < t, = 1.
For a path v and partition P, define:

X(1,P) =D () = Y(te1)le

k=1

The length of the path is:
L(v) = sup x(7: P),

where the supremum is over all partitions.
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Geodesic Distances in M and Z

Let z,z/ € Z CR? and 7 : [0,1] — Z be a path with 1(0) = z, (1) = z’. Define length similarly:
X(,P) ==Y In(te) = n(ti—1)llze,  L(n) == sup X (11, P):
k=1

Then the geodesic distances are defined by:

d¥°(x, x') = inf L(7),
M0 = o gy HO)

d¥°(z,7') = inf L(n),
z(z7) nim(0)=2,n(1)=2' ()

where the infima are taken over all continuous paths in M and Z respectively.
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Metric Equivalence (Isometry)

Proposition 3: Assume Al, A2 and A3 hold. Define D := {(z,z),z € Z} C Z x Z. If

f(z,Z) = g(llz— z’||§) for all z,z" in an open neighbourhood of D and g is twice continuously
differentiable and g’(0) < 0, then

dit (8(2), 6(2)) = /—28'(0)dZ"(z, Z')

\

Proof idea: Show that ¢ is a bi-Lipschitz homeomorphism between Z and M.Then, use that for any
path v in M of finite length, there exists a path 7 in Z such that the following holds:
For any £ > 0 there exists a partition P such that for any partition P = (ty, ..., t,) satisfying P. C P:

n

L) = D0t = n(tees). Hygo (1) = mta))) /2| < &
k=1

where (H¢)j;

)forfEZ

2 f
= 5oa
82,(‘)2]. (¢
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Isometry on the Sphere

If Z is a sphere, Proposition 3 then becomes:

Proposition 4: Assume Al and A2. If Z = {z C RY: ||z||, = 1} and f(z,2') = g({(z,2'),) for
all z,z’ in an open neighbourhood of D and g is twice continuously differentiable and g’(1) > 0,

then
d5r(6(2), 9(2") = V&' (1)d5°(2,2")
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Smoothness to concentration in a low-dimensional subspace

When Z C RY, we say that f is smooth if it is the restriction of a smooth function on RY x R? to
Zx Z.

Low-rank approximation: for s < r = rankf, define the truncated map ¢s : Z — ¢5 as
0:(2) = [VDV2u{(2), )26 (2). ... D 2ul(2),0,.. |

Eigenvalues A/ measure of how well M, := ¢.(Z) approximates M through mean square error:

E[6(2) = 6s(Z)IE, ] = D ME [[uf(Z)l] = 3 X,

k>s k>s

Since rate of decay of the Af is related to the smoothness of the kernel f taking s suitably large the
first s coordinates of ¢ provide a good approximation to M, even if r = co
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Smoothness to concentration in a low-dimensional subspace

When s < p smoothness also implies each Y; concentrates around the (at most) s-dimensional subspace
of RP spanned by the first s columns of W

Remember Proposition 1: Y; "= p/2W¢(Z;) + 0E;, E[WTW] =1,, so:

B |[¥i - poworta)|[)| = 2|0 Woz) + oFs - 5 W)

2
y
= pE[16(2)) — 6s(2)I] + o [IEil] = p Y- A + po”
k>s
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Visual example

Numerical approximations to the first 1-3, 4-6 and
Z C R¥is a torus, p is uniform distribution. Sample 7.9 dimensions of &(Zi) using PCA:
Z1, -+ Za000:

dims 1.3 of {$(Z);i=1,....n} dims 4-6 of {§(Z);i=1,...,n} dims 7-0 of {§(Z);i=1,....n}

Figure 3:  Torus example. Left: grey wireframe of Z, a torus, with colour bars indicating
coordinates with respect to two circles. Both the middle and right plots show the same n = 4000
points, Zi..... Zigoo, which are sampled uniformly on the torus, coloured by their coordinates
with respect to each of the two circles.

Xi,...,Xp i.i.d gaussian with covariance function
2
f(z,2') = exp(—z = Z|}3)

Global shape of M, when viewed three dimensions at a time, is qualitatively different to the global
shape of Z
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Visual example

However,assumptions Al, A2 and A3, hold in this example
Theoretic scaling factor for geodesic distances is /—g’(0) = /2

shortest path length in M

0 T T T
0 1 2 3

shortest path length in Z

Geodesic distances computed using nearest-neighbour graph (more on this coming up)
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Dimension Reduction by PCA

Embed Y;'s into R® via top-s eigenvectors V; of YT Y:

G=WV"Y,

Assuming X;'s are independent, have finite fourth moment and rank(f) = r < o

Theorem 1: If s = r, there exists an orthogonal matrix Q € R™*" such that as n, p/n — oo,

mapr 12Q¢; — o(Z, ”2 (\%Jr\/g)

&(Z1),...,d(Z,) can be recovered from p~1/2(y, ..., p~/?C,, up to an orthogonal transformation
Therefore, PCA can be viewed as de-noising + signal extraction

Viewed as sets, point clouds {pfl/zc,-},-zl,__.7,, and {¢(Z;)}; converge to each other in Hausdorff
distance (up to Q)
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Workflow Overview

Dimension Selection (7) via Wasserstein distance
PCA Embedding to R"

Spherical Projection ¢;/||¢;|
Nearest Neighbour Graph on projected points

ok W=

Analysis: shortest paths, MST, topology (persistent homology)
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Step 1: Dimension Selection

Split data into two halves. For each p, project first
half onto top-p PC subspace, compute Wasserstein
W, to second half in RP. Choose

T 1 1) ()
F=arg min Wa (YN, v,
where for A,B € R™*9:
1
2 . 2
A ,B) = — A,' — Bﬂ-,'
WA B) = min 37| 12

Balances bias—variance under LMM.

B. Marenco
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Step 2: PCA Embedding

Compute (; = V?TY,-, rescale p~/2. Theorem 1 ensures (; approx. o(Z;).
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Step 3: Spherical Projection

When f(z, z) varies, use extended model Y = o;Xj(Z;) + o Ej;. After PC embedding, project

so_ G
T

recovers ¢(Z;) up to scale.
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Step 4: Nearest Neighbour Graph

Build e-NN or k-NN graph on {(;"} with weights ds(u, v) = arccos(u, v ). Compute:
@ Geodesic estimates Dj; via shortest paths.
@ Persistent homology of the graph.

@ Minimum spanning tree for visualization.
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Example 1: Car Images

24 0f 72 photos in the data set, taken from camera angles 0,15,30,..,355 degrees

sl Llttr... o 45 % 13 w0 25 20 35
camera angle in degrees

e n=72, p=110592, angles §; = 0,5, ...,355°.

o Selected 7 = 11. Persistent HO/H1: loop
recovered.

@ Shortest-path vs angular distance: linear
(isometry up to scale).

B. Marenco

a) dimension selection b) kde for |Zi]| c) persistence diagram
0.21 4
g eq
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v 181 birth
d) estimated kemel fz; z)) e) est. kernel vs latent inner prod. ~ ) comparing shortest path lengths
270
180
90
o

igure 7: Tmages example. a) Wasserstein dimension selection; red vertical line indicates minimuim
at 7 = 11. b) Kernel density estimate for the magnitudes of the PCA embedding vectors. c¢)
Persistence diagram shows evidence of a single “loop” in the embedding. d) Estimated kernel as

a function of latent positions in angular form 6; = arctan(=!"/=!"). ¢) Estimated kernel
fumlmu of latent inner product (. ). the red dashed ellipse 11011111-1115 I( .2zj) in the region
(20,2, = 1. ) Bvidence of a lincar relationship between shortest path lengths computed from the
nomosl nowlxhum graph G (y-axis). and from the latent positions (z-axis).
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Example 2: Planaria Transcriptomics

@ n=5000, p = 5821. Cell types hypothesized to
form tree.

a) Minimum spanning tree b) Class graph from the minimum spanning tree

@ 7~ 14. Nearest neighbour graph shows
branching.

@ Homology: By = 1, 51 = 0, consistent with tree.

a)  Inner products between bl Average percentage increase ¢ Shortest path length in
saw embedding points in shortest path length k-nn vs MST, k = 10

Handom \
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. 1 oneobsts - ChATheuonal | neurs progentas « dgment
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Figure 8  Single-cell transcriptomics example. a) histogram of inner products between distinet eidrmis Vb nestiast et pranyrc Cheevas warts e olris parencoymalcels & oy 2
; . . i <ol i rogeniors “ncoblts o aite cets 2 «paeet parenchymalcets » secretony 3
points in the PCA and random embeddings. b) average percentage increase in shortest path length 0 e sruscien sreolsy | waieni el e
in the minimum spanning tree compared to the k-mn graph, over different values of k. Results ot cee neobiet 2 «nessost 11

for the random embedding are shown in black, over 10 simulations with error bars indicated
2xstandard error, ¢) comparing the shortest path lengths for samples in 10-mn graph and the
MST.
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Example 3: Temperature Time Series

o Daily temperature curves, n years, p time points.

@ Hypothesis: latent domain is sphere
(geographical location).

@ LMM reveals seasonal loop and anomalies.

a) dimension selection b) kde for IZ/] c) comparing knn graphs
05 <
§10
| £
345 203 206
e 8 5
£34.49 202 Soa
2 §
£303 4 014 goz —— emb. vs geog.
& |/ — rand. vs geog
2
3a.2 00 200
20 40 60 o 2 4 6 0 100 200
v ] k

Figure 10: Temperatures example. a) Wasserstein dimension selection; red line indicates minimum
at 7 = 36. b) Kemel density estimate of the probability density of PC' score magnitudes. ¢) The
blue curve shows proportion of edges in common between embedding A-nn graph and geographic
F-nn graph. The black line shows the mean proportion in common between the k- graph of a
100 uniformly random embeddings and the geographic k-nn graph. The red band indicates the
range between maximum and minimum proportions across these 100 random embeddings

Figure 12: Temperatures example. Shortest paths in the embedding k-nn graph G from Tallinn,
Estonia, to all other towns and cities. Each shortest path is visualized as a spline, with knot points
given by the geographic locations of its constituent towns and cities. The red dots highlight the
shortest path from Tallinn to Tripoli, Libya.
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Special Case of LMM: IID Features

Suppose Xj(z) = h;(z) where h; are i.i.d. samples from a Gaussian process with mean zero and
covariance kernel f. Then:

@ Mean correlation kernel is exactly f(z,z’).
@ The feature map ¢(z) recovers the GP kernel structure.
@ PCA performs kernel PCA on f.
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Special Case of LMM: Linear Features

Let Z C R and Xj(z) = w;" z where w; € R? are i.i.d. with mean zero and identity covariance.
e Then f(z,2') = z"Z, i.e., a linear kernel.
o Feature map: ¢(z) = z, the identity embedding.

@ LMM recovers classical linear factor models (e.g., probabilistic PCA).
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Special Case of LMM: Spiked Covariance Model

Let X € R"™P be a data matrix with E[X T X] of rank r. Perform its eigendecomposition:
1
—E[XTX] = VAVT,
n
with V € RP*" orthonormal and A = diag(Aq,...,\,). Define
Z = XVAT2,
Then one checks:
E[Z"Z]=nl, VTV =1,
X =ZN/?2vT)  as,
where the last equality follows because
E|[X — ZAY2VT |2 = tr E[(X — ZAY2VT)T(X — ZAY2v )] = 0.
Adding isotropic noise E yields spiked covariance model
Y = ZAY2VT 4 oE.
Statistical Exploration of the Manifold Hypothesis 33 /36



Special Case of LMM: Finite Mixture Model

Suppose Z = {1,...,K} and Z; indicate mixture components. Let means my, ..., mx € R” and
Xi(z) = mY)

be the jth coordinate of m,. Then:

o f(z,2/) = %(mz, my), a rank-K kernel.

e Data follow a mixture of K point clusters on the manifold {my, ..., mg}.
@ Nearest-neighbor graph recovers cluster structure.
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Conclusions and Future Work

o LMM provides statistical basis for the Manifold Hypothesis.
@ Homeomorphism and isometry connect latent and observed manifolds.
@ PCA + Wasserstein + graph methods enable exploration.
°

Future: non-Euclidean latent domains, faster algorithms, robustness analysis.
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