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one of the most significant challenges of the coming years.

An essential mitigation mechanism is the maintenance of large
protected areas as these serve as habitats for a wide variety of
species as well as water reservoirs.
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under threat: hunting, illegal logging and mining, and species
trafficking, among others.

This is a challenge for those who care for these areas as they must
allocate the limited resources at their disposal to care for
large areas. Caretakers (park rangers) are typically at a
considerable disadvantage with respect to attackers.

Question. Can we design systems that help rangers preserve
protected areas?
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Jama Coaque

The Jama Coaque ecological reserve in the coast of Ecuador is a
protected area of 850HAs of tropical rainforest (4%× MVD).

It is a key resource in the protection of biodiversity in the region.

From wikipedia: ”The Jama-Coaque Ecological Reserve serves as
habitat and key migratory channel for six endangered species of
felines (jaguar, puma, ocelot, oncilla, margay, and jaguarundi) and
two endangered species of primates (mantled howler monkey and
white-fronted capuchin monkey). Other endangered mammals
include the tayra, the three-toed sloth, the western agouti, and the
spotted paca. In 2009, herpetologist Paul S. Hamilton discovered
two new species of frog in the cloud forest of the Jama-Coaque
Ecological Reserve”.
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Jama Coaque:

The reserve is protected by a team of rangers who patrol it. It
is under constant threat, by illegal logging of balso wood and
illegal hunting of zainos and deers.

The terrain is so difficult that rangers (and poachers) move
only along the paths in a fixed trail graph (with 128 edges).

Rangers patrol the reserve using cycles in this trail graph
(there are more than 135.000 such cycles and more than
10.000 that go through the bamboo house)

The team of rangers has B = 4 people, who patrol it every
day along distinct cyclical routes.
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Main problem:

Every day the team of rangers needs to decide on a set of B = 4
cycles to patrol

(choosing among around
(10000

4

)
∼ 1014

alternatives).

1 How should the set of patrol cycles be selected?

2 How should rangers use the available data to dynamically
improve their routes?

A good solution needs to combine the constant exploration of the
reserve with visiting those places where rangers suspect
environmental crimes are most likely to happen (exploitation of
previously acquired knowledge).
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Multi-armed bandits

(or how to solve an exploration vs

exploitation dilemma).



Multi-armed bandits:

A player has a set of m slot machines (arms) numbered
1, 2, 3, . . . ,m. At each turn the player chooses a machine, pulls the
corresponding arm and gets a certain amount of money.
What strategy should the player use to maximize his return
in T turns?



Multi-armed bandits:

If we knew the mean µi of each arm, this problem would be very
easy.

We look for the best machine (arm)

j∗ := argmaxj∈[m](µj)

and use it on every turn.

The problem is that the player does not know the means. So
he should use some of his time to try to learn which machines have
a good return and some of his time to play in these machines.

The multi-armed bandit is a fundamental problem because it
abstracts the dilemma between exploration and exploitation.
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Solution strategies

A strategy A is an algorithm that tells us which arm to choose in
each turn based on the returns of previous moves.

Definition.

The regret of a strategy A after n turns is defined as the profit
loss resulting from using strategy A and not the optimal strategy
during the first n turns.

More precisely, if Ti (n) denotes the number of times that arm i
has been selected during the first n turns then

R(n) := µ∗n −
m∑
j=1

µjE[Tj(n)]

where µ∗ := maxi∈[m] µi .
The regret function is always nonnegative and we wish to make it
as small as possible.
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Upper confidence bound policy (UCB):

In 2002 Auer, Cesa-Bianchi and Fischer propose the following
strategy:

Initialization: Play each arm once.

In each turn n ≥ m + 1 do:
1 Compute the quantities

x̂j := xj +

√
2 ln(n)

nj

where xj is the average return obtained by the j-th arm so far
and nj is the number of times that the j-th arm has been used
so far.

2 Pull the t-th arm where t is the index that maximizes x̂j .
Write down the returns and update all your estimates.



Theorem. (Auer, Cesa-Bianchi, Fischer, 2002)

For every m > 1 and return distributions supported in [0, 1], the
UCB strategy satisfies the inequality

R(n) ≤

8
∑

i :µi<µ∗

log(n)

∆i

+

(
1 +

π2

3

)( m∑
i=1

∆i

)

with ∆i := µ∗ − µi

In particular, we have

lim
n→∞

R(n)

n
= 0
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The proof of the Theorem consists in verifying that for every
sub-optimal arm j we have E[Tj(n)] ≤ 8 log(n)

∆2
j

via Hoeffding’s

inequality

It is known (Lai y Robbins, 1985) that for every strategy the
inequality

E[Tj(n)] ≥ log(n)

D(pj‖p∗)
holds. so the UCB is asymptotically optimal
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Back to Jama Coaque:

Can we think of the rangers’ problem as a MAB?

Yes to first approximation. Every day the ranger must choose a
cycle hoping to find which ones do have illegal activity (return).
However, this approach has several problems:

There are too many means to be estimated (if we simply
assign one per cycle).

By thinking of cycles as independent black boxes there is a lot
of information that we are loosing (for example that different
cycles share edges).

To think that the cycles are independent of each other is a
very weird assumption for very similar cycles.

We would like to be more flexible and assign rangers to each
shift.
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A model:

Back to JamaCoaque, we propose the following basic model:

Illegal activity is a function of the terrain conditions (presence of
certain tree species, proximity to bodies of water, etc.). We
assume that such activities occur in each edge according to a
Bernoulli r.v. with parameter p(e) (sampled independently each
day and among distinct edges).

The objective of the team of rangers is to select a subset S
consisting of B cycles so that

rp(S) := E[r(S)] =
∑

e∈
⋃

S

p(e)

is maximized.
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Knowing p(e): Coverage problems.

If the p(e) were known numbers then, selecting an optimal set
S becomes a variant of the weighted coverage problem.

This problem is NP-hard so even knowing the probabilities the
problem that rangers have to solve is computationally difficult.

However, there is a good certified approximation algorithm,

Theorem. (Betancourt, -)

There exists a linear programming + sampling algorithm so that
the obtained cycles are guaranteed to have weight at least
(1− 1/e)OPT where OPT is the true optimum of the problem.
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Learning edge probabilities

In practice rangers do not know the edge probabilities p(e).
To learn them we will use the framework of Combinatorial
multi-armed bandits [Chen, Wang, Yuan, 2013].

CUCB Algorithm: Initialize. In turn n > 0 do:

1 Recompute estimates for the probabilities pe of illegal
activities on each edge

p̂e(n) := min

pe +

√
3 ln(n)

2ne
, 1


where pe es the average illegal activity seen on edge e so far
and ne is the number of times that edge e has been visited.

2 Rangers visit the cycles determined by our approximation
algorithm, assuming the weights are given by the estimators
(p̂e(n))e obtained in (1).



Learning edge probabilities

In practice rangers do not know the edge probabilities p(e).
To learn them we will use the framework of Combinatorial
multi-armed bandits [Chen, Wang, Yuan, 2013].

CUCB Algorithm: Initialize. In turn n > 0 do:

1 Recompute estimates for the probabilities pe of illegal
activities on each edge

p̂e(n) := min

pe +

√
3 ln(n)

2ne
, 1


where pe es the average illegal activity seen on edge e so far
and ne is the number of times that edge e has been visited.

2 Rangers visit the cycles determined by our approximation
algorithm, assuming the weights are given by the estimators
(p̂e(n))e obtained in (1).



Approximate regret

Definition.

We define the regret of any strategy A as

R(n) = n(1− 1/e)OPT (p)−
n∑

t=1

Ep

[
r(SA

t )
]

Observations:

The regret depends on the (unknown) true probabilities p.

Compares the optimum that one could guarantee practically
(with a polynomial time approximation algorithm) with the
output of our CUCB algorithm (on average).

Theorem. (Betancourt, - )

If m is the number of trails then the CUCB satisfies

R(n) ≤
[

6 log(n)

∆2
min

+
π2

3
+ 1

]
m∆max = O(m log(n)).
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Example:

Poacher routes



CUCB patrol frequencies

t = 10 t = 50 t = 180



Returns during 25 days:



Combined with accoustic monitoring systems:


